Аминокислоты

Аминокислоты – это строительные блоки макромолекул белков. По строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу.

Таким образом, в аминокислотах обязательно присутствует карбоксильная группа (СООН), аминогруппа (NH2), асимметричный атом углерода и боковая цепь (радикал R). Строением боковой цепи аминокислоты и отличаются друг от друга. Именно радикал придает аминокислотам большое разнообразие строения и свойств.

Аминокислоты — это строительные блоки белковых молекул, но необходимость их изучения кроется не только в данной функции.

Такие аминокислоты как гистидинтриптофанглутаминовая кислотатирозин являются источником для образования нейромедиаторов в ЦНС (соответственно гистаминсеротонингамма-аминомасляная кислотадофамин и норадреналин),  а глицин и глутаминовая кислота сами являются нейромедиаторами.

Те или иные аминокислоты необходимы для синтеза пуриновых и пиримидиновых оснований без которых нет нуклеиновых кислот, используются для синтеза низкомолекулярных биологически важных соединений (креатинкарнитин, карнозин, ансерин и др.). 

Аминокислота метионин необходима для синтеза фосфатидилхолина, одного из основных компонентов клеточных мембран.

Аминокислота тирозин целиком входит в состав гормонов щитовидной железы (тироксин, трийодтиронин) и мозгового вещества надпочечников (адреналин, норадреналин).

С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний, сопровождающихся серьезными проблемами в развитии организма, таких как цистинозгомоцистеинемиялейцинозтирозинемии и др. Самым известным примером является фенилкетонурия.

Аминокислоты в медицине используются в качестве лекарств

Метионин, незаменимая кислота, содержит мобильную метильную группу, которая может передаваться на другие соединения. Благодаря этому она участвует в синтезе холина, фосфолипидов, обмене витаминов В12 и фолиевой кислоты. В реакциях биосинтеза белка метионин является инициирующей аминокислотой. Он участвует в процессах обезвреживания токсинов в печени.

Метионин («Ациметион«) и его активные производные (как вещество «адеметионин» в составе препарата «Гептрал«) используют для профилактики и лечения различных заболеваний печени как липотропный фактор, препятствующий накоплению жира, при токсических поражениях печени, при атеросклерозе и в качестве антидепрессанта для улучшения синтеза нейромедиаторов.

Глутаминовая кислота – это предшественник гамма-аминомасляной кислоты (ГАМК), являющейся тормозным медиатором нервной системы. Сама по себе глутаминовая кислота также является нейромедиатором, стимулирующим передачу возбуждения в синапсах ЦНС. Кроме этого, глутамат участвует в обезвреживании аммиака, синтезе пуриновых и пиримидиновых оснований, играет ведущую роль в обмене остальных аминокислот, что активно используется в спортивной медицине. Потребность организма в глутаминовой кислоте в несколько раз выше потребности в других аминокислотах.

Глицин является медиатором ЦНС тормозного действия. Улучшает метаболизм в тканях мозга. Оказывает успокаивающее действие. Нормализует сон, уменьшает повышенную раздражительность, депрессивные состояния.

Цистеин участвует в метаболизме хрусталика глаза. Зачастую нарушения хрусталика связаны с недостатком цистеина, поэтому цистеин применяют на начальных стадиях катаракты.

Комплексный препарат глутаминовой кислоты, цистеина и глицина «Вицеин» используют в виде глазных капель.

Гистидин – условно незаменимая аминокислота. Используется при лечении гепатитов, язв желудка и двенадцатиперстной кишки. В организме гистидин превращается в медиатор гистамин.

Церебролизин – гидролизат вещества мозга свиньи, содержащий низкомолекулярные пептиды (15%) и аминокислоты (85%). Используется при нарушениях функций ЦНС, мозговых травмах, кровоизлияниях, вегетативных дистониях и т.п.

Препараты для парентерального питания: полиамин (набор 13 аминокислот), вамин (набор 18 аминокислот), ваминолакт (набор 18 аминокислот, соответствующих составу грудного молока), гидролизин (гидролизат белков крови крупного рогатого скота), аминотроф (гидролизат казеина), фибриносол (гидролизат фибрина крови).

Аминокислоты объединяют в несколько классов

В аминокислотах обязательно присутствует карбоксильная группа (СООН), аминогруппа (NH2), асимметричный атом углерода и боковая цепь (радикал R). Строением боковой цепи аминокислоты и отличаются друг от друга. Именно радикал придает аминокислотам большое разнообразие строения и свойств.

Классификация аминокислот может проводиться в зависимости от какого-либо свойства или качества аминокислот:

1. В зависимости от положения аминогруппы по отношению к С2 (α-углеродный атом) на α-аминокислоты, β-аминокислоты и др.

2. По абсолютной конфигурации молекулы на L- и D-стереоизомеры.

3. По оптической активности в отношении плоскости поляризованного света – на право- и левовращающие.

4. По участию аминокислот в синтезе белков – протеиногенные и непротеиногенные.

5. По строению бокового радикала – ароматические, алифатические, содержащие дополнительные СООН- и NH2-группы.

6. По кислотно-основным свойствам – нейтральные, кислые, основные.

7. По необходимости для организма – заменимые и незаменимые.

Двадцать аминокислот необходимы для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α-аминокислотами и на их примере можно показать дополнительные способы классификации.

По строению бокового радикала

Выделяют

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин),
  • ароматические (фенилаланин, тирозин, триптофан),
  • серусодержащие (цистеин, метионин),
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH2-группу (лизин, аргинин, гистидин, также глутамин, аспарагин)

NB! Обычно названия аминокислот сокращаются до 3-х буквенного обозначения. Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

По полярности бокового радикала

Существуют неполярные аминокислоты и полярные.

К неполярным относят аминокислоты, имеющие алифатические углеводородные цепи (аланин, валин, лейцин, изолейцин, метионин, пролин) и ароматические кольца (фенилаланин, триптофан).

К полярным незаряженным относятся аминокислоты, имеющие гидроксильные группы (серин, треонин, тирозин), амидные группы (аспарагин, глутамин), тиольную группу (цистеин) и глицин. Аспарагиновая и глутаминовая аминокислоты имеют в радикале дополнительную карбоксильную группу, отрицательно заряжены и, соответственно, полярны. К аминокислотам с полярными положительно заряженными радикалами относятся лизин, аргинин, гистидин. 

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е. их синтез происходит в недостаточном количестве, особенно это касается детей.

Аминокислоты обладают изомерией

Изомерия аминокислот в зависимости от положения аминогруппы

В зависимости от положения аминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты.

α- и β- формы аланина

Для организма млекопитающих наиболее характерны α-аминокислоты.

Изомерия по абсолютной конфигурации

По абсолютной конфигурации молекулы выделяют D- и L-формы. Различия между изомерами связаны с взаимным расположением четырех замещающих групп, находящихся в вершинах воображаемого тетраэдра, центром которого является атом углерода в α-положении. Имеется только два возможных расположения химических групп вокруг него.

В белке любого организма содержится только один стереоизомер, для млекопитающих это L-аминокислоты.

S01-LD-ala

L- и D-формы аланина

Однако оптические изомеры могут претерпевать самопроизвольную неферментативную рацемизацию, т.е. L-форма переходит в D-форму. 

NB! Как известно, тетраэдр – это довольно жесткая структура, в которой невозможно произвольным образом передвинуть вершины.

Точно так же для молекул, построенных на основе атома углерода, − за эталон конфигурации принята структура молекулы глицеральдегида, установленная с помощью рентгеноструктурного анализа. 

Принято, что в качестве маркера используют наиболее сильно окисленный атом углерода (на схемах его располагают сверху), связанный с асимметричным атомом углерода. Таким окисленным атомом в молекуле глицеральдегида служит альдегидная группа, для аланина – СООН группа. Атом водорода в ассиметричном углероде располагают так же, как в глицеральдегиде.

В дентине, белке зубной эмали, скорость рацемизации L-аспартата равна 0,10% в год. При формировании зуба у детей используется только L-аспартат. Такая особенность позволяет при желании определять возраст долгожителей. Для ископаемых останков наряду с радиоизотопным методом также используют определение рацемизации аминокислот в белке.

Деление изомеров по оптической активности

По оптической активности аминокислоты делятся на право— и левовращающие.

Наличие в аминокислоте ассиметричного α-атома углерода (хирального центра) делает возможным только два расположения химических групп вокруг него. Это приводит к особому отличию веществ друг от друга, а именно – изменению направления вращения плоскости поляризованного света, проходящего через раствор. Величину угла поворота определяют при помощи поляриметра. В соответствии с углом поворота выделяют правовращающие (+) и левовращающие (–) изомеры.

Схема, иллюстрирующая поворот
плоскости поляризованного света

Право- и левовращающие формы аланина

NB! Деление на L- и D-формы не соответствует делению на право- и левовращающие. Для одних аминокислот L-формы (или D-формы) являются правовращающими, для других – левовращающими. Например, L-аланин – правовращающий, а L-фенилаланин – левовращающий. При смешивании L- и D-форм одной аминокислоты образуется рацемическая смесь, не обладающая оптической активностью.

Для аминокислот характерна амфотерность

Амфотерность является основным физико-химическим свойством аминокислот.

Понятие амфотерность означает, что вещество сочетает в себе свойства как кислот, так и оснований. В водном растворе аминокислоты одновременно ведут себя как кислоты – доноры протонов и как основания – акцепторы протонов. Данное свойство аминокислот напрямую связано со амфотерными свойствами белков, благодаря которому они участвуют в регуляции кислотно-основного состояния крови.

Амфотерность аминокислот

Если общий заряд аминокислоты равен 0, то это ее состояние называют изоэлектрическим.

Величина рН, при которой заряд аминокислоты равен 0, называется изоэлектрической точкой (ИЭТ, pI). Значение изоэлектрической точки зависит от строения радикала аминокислоты:

  • ИЭТ большинства аминокислот располагается в диапазоне рН от 5,5 (фенилаланин) до 6,3 (пролин),
  • ИЭТ кислых аминокислот — для глутамата 3,2, для аспартата 2,8,
  • ИЭТ основных аминокислот — для гистидина 7,6, для аргинина 10,8, для лизина 9,7.

NB! Изоэлектрическая точка гистидина позволяет ему использоваться в буферной системе гемоглобина. Гемоглобин легко принимает и легко отдает ионы водорода при малейших сдвигах физиологической рН крови (в норме 7,35-7,45).

Заряд аминокислот зависит от величины рН среды и от строения их радикала.

При снижении концентрации ионов водорода в растворе (защелачивание среды) повышается их отрыв от аминогруппы и карбоксигруппы аминокислот. Иными словами, от аминокислоты уходит положительный заряд и она становится отрицательно заряженной. Когда рН снижается (закисление среды), то имеющиеся в растворе ионы Н+ присоединяются к амино- и карбоксигруппам – заряд аминокислоты становится положительным.

Отправным пунктом для понимания причин появления заряда у конкретной аминокислоты является величина изоэлектрической точки. К уже сказанному необходимо добавить одну очень существенную вещь – изменение рН рассматривается относительно изоэлектрической точки (ИЭТ, pI). Если рН ниже pI – заряд аминокислоты становится положительным, если рН выше – отрицательным.

Изменение заряда аминокислот при смещении рН раствора
в кислую или щелочную сторону.
(кликните на рисунке, чтобы увеличить)

Аминокислоты соединяются пептидной связью

Аминокислоты способны соединяться между собой связями, которые называются пептидными, при этом образуется полимерная молекула. Если количество аминокислот не превышает 10, то новое соединение называется пептид; если от 10 до 40 аминокислот – полипептид, если более 40 аминокислот – белок.

Пептидная связь – это связь между α-карбоксильной группой одной аминокислоты и α-аминогруппой другой аминокислоты.

Образование пептидной связи

При необходимости назвать пептид ко всем названиям аминокислот добавляют суффикс «-ил», только последняя аминокислота сохраняет свое название неизменным. Например,

  • аланил-серил-триптофан,
  • γ-глутаминил-цистеинил-глицин (по-другому называемый глутатион).

NB! Глутатион — это трипептид, участвующий в целом ряде биохимических процессов:

  1. В переносе аминокислот через мембрану.
  2. В нейтрализации свободных радикалов.
  3. В конъюгировании с токсическим веществами и их удалении из организма.

Строение трипептида глутатиона

Особенностью глутатиона является связывание глутамата и цистеина не истинной пептидной связью, а через γ-карбоксильную группу радикала глутаминовой кислоты.

К свойствам пептидной связи относятся:

1. Копланарность

Все атомы, входящие в пептидную группу находятся в одной плоскости, при этом атомы «Н» и «О» расположены по разные стороны от пептидной связи.

2.Транс-положение заместителей

Радикалы аминокислот по отношению к оси пептидной C—N-связи находятся по «разные» стороны, в транс-положении.

3. Две равнозначные формы

Пептидная связь находится в кетоформе и енольной форме.

4. Способность к образованию водородных связей.

Атомы кислорода и водорода, входящие в пептидную группу, обладают способностью образовывать водородные связи с атомами кислорода и водорода других пептидных групп.

5. Пептидная связь имеет частично характер двойной связи.

Длина пептидной связи меньше, чем одинарной связи, она является жесткой структурой, и вращение вокруг нее затруднено. Но так как, кроме пептидной, в белке есть и другие связи, цепочка аминокислот способна вращаться вокруг основной оси, что придает белкам различную конформацию (пространственное расположение атомов).